

TDS | 1049.1 CONCA® THRU-BOLTTM

CONCA

CONCA® ECONOMY THRU-BOLT™

CONCA[®] ECONOMY THRU-BOLT[™] is a pre-assembled a torque controlled mechanical stud anchor, which when tightened draws the tapered end of the bolt into the expander clip expanding it to create expansion forces against the wall of the drilled hole in the concrete base material.

- Heavy duty Class 5.8 Carbon steel
- Thru fixing for fast installation
- Anchor Diameter = Hole Diameter (eg M12 anchor, 12mm Hole)
- Engineered Clip designed for consistent performance and prevents anchor rotation

Carbon Steer -	Udivaliiseu								
Part No.	Description	Bolt Size (mm)	Drill Size (mm)	Clearance Hole Size (mm)	Embedment Depth - h _{embed} (mm)	Fixture Thickness (mm)	Torque Setting (Nm)	qty.	ty.
ETB08080G	8 x 80 mm	M8	8		55	15	15	50	500
ETB08100G	8 x 100 mm	M8	8	9	55	35	15	50	500
ETB08120G	8 x 120 mm	M8	8		55	55	15	50	500
ETB10065G	10 x 65 mm	M10	10		45	10	25	25	250
ETB10090G	10 x 90 mm	M10	10	17	60	17	25	25	250
ETB10120G	10 x 120 mm	M10	10	12	60	47	25	25	250
ETB10140G	10 x 140 mm	M10	10		60	67	25	25	250
ETB12080G	12 x 80 mm	M12	12		60	5	45	25	250
ETB12100G	12 x 100 mm	M12	12		60	25	45	25	200
ETB12120G	12 x 120 mm	M12	12	14	60	45	45	25	150
ETB12140G	12 x 140 mm	M12	12		80	45	45	25	150
ETB12180G	12 x 180 mm	M12	12		80	85	45	25	100
ETB16105G	16 x 105 mm	M16	16		80	5	110	25	100
ETB16125G	16 x 125 mm	M16	16	10	100	10	110	25	100
ETB16140G	16 x 140 mm	M16	16	10	100	20	110	25	50
ETB16190G	16 x 190 mm	M16	16		100	70	110	25	50
ETB20125G	20 x 125 mm	M20	20		100	5	180	10	40
ETB20160G	20 x 160 mm	M20	20	22	120	20	180	10	40

Information contained in this technical document is based on testing by the manufacturer and should be reviewed and approved by a design professional responsible for the given application. Technical data contained in this document does not comply with AS 5216. For safety critical fastening applications designed in accordance with AS 5216, please refer to the ICCONS website for a complete suite of compliant post-installed chemical and mechanical anchoring products.

PERFORMANCE

TDS | 1049.1

Recommended loads

	Øø	小 [4]	N _{rec}				V _{rec}		
→	2-	↓		TENSION			SHEAR		
Anchor Size (mm)	Drill Size (mm)	Anchor Embedment Depth - h _{embed.} (mm)	20MPa (kN)	32MPa (kN)	40MPa (kN)	20MPa (kN)	32MPa (kN)	40MPa (kN)	
8	8	55	3.7	4.8	5.6	3.8	3.8	3.8	
10	10	45	3.2	4.1	4.5	3.2	4.1	4.5	
10		60	5.3	6.9	7.9	5.6	6.1	6.1	
12	12	60	4.9	6.2	6.9	4.9	6.2	6.9	
		80	7.6	9.9	11.7	8.8	8.8	8.8	
16	16	80	8.4	10.7	11.9	16.3	16.3	16.3	
10	10	100	11.3	14.7	17.3	16.3	16.3	16.3	
20	20	100	12.2	15.5	17.3	24.6	25.5	25.5	
	20	120	13.8	18.2	19.9	25.5	25.5	25.5	

Note: Load capacities above incorporate a safety factor of 3 for concrete and 2.5 for steel. All loads are representative of a single anchor installed remote from an edge. The above information has been derived from laboratory test results using NATA calibrated equipment.

Limit State Design - Multiply the above loads by 1.8 (Concrete) and 2 (Steel) to determine the Limit State Design capacities.

STEEL GOVERNING

Information contained in this technical document is based on testing by the manufacturer and should be reviewed and approved by a design professional responsible for the given application. Technical data contained in this document does not comply with AS 5216. For safety critical fastening applications designed in accordance with AS 5216, please refer to the ICCONS website for a complete suite of compliant post-installed chemical and mechanical anchoring products.

Material Specifications

CONCA® ECONOMY THRU-BOLT™

Galvanised

Expander Clip	A2 stainless steel
Washer	AISI1010
Nut	Grade 5
Anchor bolt	Class 5.8
Plating	Galvanised Coating thickness 45 microns (min.)

Installation

Anchor Part

With the correct diameter drill bit, drill a hole to the correct depth.

Clean dust and other material from the hole.

Insert anchor into position through the clearance hole in the fixture.

With correct size socket or spanner tighten anchor to specified torque. Installation complete!

DESIGN CONDITIONS

Simplified Design Method

When anchor spacing or edge distances are less than critical distances, Recommended Working Load capacities must be multiplied by the appropriate reduction factors. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. If an anchor/anchor group is affected by multiple reduced spacing and edge distances, the spacing and edge reduction factors must be multiplied together to give a total effect on the anchor/anchor group performance.

Spacing Reduction Factors $(S_t + S_s)$ - tension and shear

	d (mm)	8	10		12		16		20	
	h _{embed}	55	45	60	60	80	80	100	100	120
	S _{cr} (mm)	110	90	120	120	160	160	200	200	240
	S _{min} (mm)	55	45	60	60	80	80	100	100	120
	45		0.50							
	50		0.56							
	55	0.50	0.61							
	60	0.55	0.67	0.50	0.50					
	70	0.64	0.78	0.58	0.58					
	80	0.73	0.89	0.67	0.67	0.50	0.50			
E	90	0.82	1.00	0.75	0.75	0.56	0.56			
(S)	100	0.91		0.83	0.83	0.63	0.63	0.50	0.50	
cing	110	1.00		0.92	0.92	0.69	0.69	0.55	0.55	
Spa	120			1.00	1.00	0.75	0.75	0.60	0.60	0.50
	140					0.88	0.88	0.70	0.70	0.58
	160					1.00	1.00	0.80	0.80	0.67
	180							0.90	0.90	0.75
	200							1.00	1.00	0.83
	220									0.92
	240									1.00

Note: To achieve 100% anchor capacity, critical spacing (S_{cr}) is equal to 2 x h_{embed} . Minimum spacing (S_{min}) is equal to h_{embed} at which the anchor achieves 50% of capacity.

Edge Distance Reduction Factor (C₊) - tension

	d (mm)	8	10	12	16	20
	C _{cr} (mm)	96	120	144	192	240
	C _{min} (mm)	40	50	60	80	100
	40	0.75				
	50	0.79	0.75			
	60	0.84	0.79	0.75		
	72	0.89	0.83	0.79		
E E	80	0.93	0.86	0.81	0.75	
(S)	96	1	0.91	0.86	0.79	
cing	100		0.93	0.87	0.8	0.75
Spa	120		1	0.93	0.84	0.79
	144			1	0.89	0.83
	192				1	0.91
	240					1

Note: To achieve 100% anchor capacity, critical edge distance (C_{cr}) is equal to 12d (12 x anchor diameter). Minimum edge distance (C_{min}) is equal to (5d) at which the anchor achieves 75% of capacity.

CONCA® THRU-BOLT™

DESIGN CONDITIONS

Simplified Design Method

Edge Distance Reduction Factor (C₂) - shear

-	-		. 3.							
	d (mm)	8	10	12	16	20				
	C _{cr} (mm)	96	120	144	192	240				
	C _{min} (mm)	40	50	60	80	100				
	40	0.35								
	50	0.47	0.35							
	60	0.58	0.44	0.35						
ε	72	0.72	0.55	0.44						
ي س	80	0.81	0.63	0.5	0.35					
ja B	96	1	0.78	0.63	0.44					
acir	100	1	0.81	0.66	0.47	0.35				
2	120		1	0.81	0.58	0.44				
	144		1	1	0.72	0.55				
	192			1	1	0.78				
	240				1	1				

Note: To achieve 100% anchor capacity, critical edge distance (C_{α}) is equal to 12d (12 x anchor diameter). Minimum edge distance (C_{min}) is equal to (5d) at which the anchor achieves 35% of capacity.

Base Material Thickness

Base material thickness should be $1.5 \times h_{embed}$. or a minimum of 100mm, always use the greater of the two values.

Combined Tension & Shear Loading

For combined tension and shear load applications the following equations shall be satisfied; $N_{applied} / N_{rec} \le 1$ $V_{applied} / V_{rec} \le 1$ $(N_{applied} / N_{rec}) + (V_{applied} / V_{rec}) \le 1.2$

Where:		
$N_{applied}$	=	Applied Tension Load
N_{rec}	=	Recommended Tension Load
$V_{applied}$	=	Applied Shear Load
V_{rec}	=	Recommended Shear Load

CONCA® THRU-BOLT™

TDS | 1049.1

Notes

CONCA® THRU-BOLT™

TDS | 1049.1

Notes

· · · · · · · · · · · · · · · · · · ·	

TDS | 1049.1

TurnPRO with LearnPRO!

ICCONS® brand new learning management system!

ICCONS[®] - FIXING EDUCATION

- ✓ Learn the Basics of Fixings and Fasteners
- Learn about the National Construction Code, ETA's and Australian standards and how they affect us all
- ✓ Learn about product approvals and their requirements
- ✓ Learn how to use ICCONS[®] DesignPRO (Anchor Design Software)
- Learn about ICCONS[®] ChemSelect Adhesive range covering Ultimate, Premium and Standard performance categories
- Learn about adhesive installation accessories and how to make sure you comply with relevant ETAs
- Learn how to use ICCONS[®] App and other systems to their fullest potential

WWW.ICCONS.COM.AU

ICCONS® PTY LTD

VICTORIA - Head Office

383 Frankston Dandenong Rd, Dandenong South, Victoria, 3175 P: **03 9706 4344**

NSW Branch

Unit A, 17 Seddon Street, Bankstown, New South Wales, 2200 P: **02 9791 6869**

QLD Branch

42-44 Nealdon Dr, Meadowbrook, Queensland, 4131 P: **07 3200 6455**

FNQ Branch

41 Corporate Crescent, Garbutt, Queensland, 4814 P: **07 2111 3453**

S.A Branch

29-31 Weaver Street, Edwardstown, South Australia, 5039 P: **08 8234 5535**

W.A. Branch

90 Christable Way, Landsdale, Western Australia, 6065 P: **08 6305 0008**

N.T Branch

Unit 1, 14 Menmuir Street, Winnellie, Northern Territory, 0820 P: **08 8947 2758**

NEW ZEALAND

SESTO FASTENERS

5E Piermark Drive, Rosedale, Auckland, New Zealand, 0632 P: +64 9415 8564 E: sestofasteners@gmail.com

THAILAND

ICCONS[®] (Thailand) Co. Ltd. 55 Phetkasem 62/3, Bangkhae, Bangkok Thailand, 0160 P: + 66 2 801 0764 F: + 66 2 801 0764 M: + 66 8 1 710 8745 E: icconsthailand@iccons.com.au